Preview

Issues of Risk Analysis

Advanced search

THE MODELS OF CREDIT RISK ASSESSMENT

https://doi.org/10.32686/1812-5220-2017-14-4-68-75

Abstract

The purpose of this Article is to present overview of models which help to assess credit risks. The methodology for modelling a credit event can be split into two main approaches: the structural approach and the reduced form approach. The basic of credit risk assessment is the concept of default. The structural approach framework, the probability of default depends on the market value of the company: if the value of the company falls below the threshold — the default occurs. There are models of authors: Merton, Black & Cox, Vasicek, CreditMetrics, KMV; are consider in the article. The second approach is based on the computation of the «hazard process»: the probability of default not depends on the market value of the company. In the article we focus on CreditRisk+ & CreditPortfolio models.

About the Author

E. T. Aris
Synergy University, Moscow
Russian Federation


References

1. Monique Jeanblanc, Yann Lecam. Reduced form Model- ling for Credit Risk. (November 12, 2007), 21с http://www. maths.univ-evry.fr/prepubli/260.pdf

2. Abel Elizalde, Credit Risk Models IV: Understanding and pricing СDOs, 2005, 45с. http://www.abelelizalde.com/ pdf/survey4%20-%20cdos.pdf

3. Abel Elizalde, Credit Risk Models III: Reconciliation Re- duced-Structural models, 2005, 13c. http://www.abeleli- zalde.com/pdf/survey3%20-%20reconciliation.pdf

4. Christian Bluhm, Ludger Overbeck, Christoph Wagner. An Introduction to Credit Risk Modeling. Chapman & Hall/ CRC financial mathematics series, 2002, 285 с.

5. Hult H., Lindskog F. Mathematical Modeling and Statis- tical Methods for Risk Management. 2007, 108 с.http://reslib.com/book/Mathematical_Modeling_and_Statisti- cal_Methods_for_Risk_Management.

6. Peter J. Crosbie, Jeffrey R. Bohn. Modeling Default Risk. http://www.moodyskmv.com/research/whitepaper/Mod- elingDefaultRisk.pdf. 31 с.

7. Abel Elizalde, Credit Risk Models II: Structural Models, 2005, 32 c. http://www.abelelizalde.com/pdf/survey2%20 -%20structural.pdf

8. Guntay L., Hackbarth D. Corporate bond credit spreads and forecast dispersion, 2007, http://www.fmpm.org/ docs/12th/papers_2009_web/F2c.pdf 45 с.

9. Myhre H. M., Ree A., Westbye A. An Empirical Analysis of Structural Credit Risk Models and Capital Structure Ar- bitrage, 2004, 111c http://org.ntnu.no/cd/Hovedoppgave/ CapitalStructureArbitrage.pdf

10. Huang X., Oosterlee C. W. and J. A.M. van der Weide. High- er-order saddlepoint approximations in the Vasicek port- folio credit loss model, Journal of Computational Finance Vol. 11, No. 1 (Fall 2007). Pp. 93-113.

11. Bharath, Sreedhar T. and Shumway, Tyler. Forecasting De- fault with the KMV-Merton Model (December 17, 2004). AFA 2006 Boston Meetings Paper. 36 pages.

12. Пустовалова Т. А., Кутуев Р. Р. Управление кредитным риском кредитного портфеля коммерческого банка // Вестник СПбГУ. Сер. 8.2008. Вып. 1. С. 135-154.


Review

For citations:


Aris E.T. THE MODELS OF CREDIT RISK ASSESSMENT. Issues of Risk Analysis. 2017;14(4):68-75. (In Russ.) https://doi.org/10.32686/1812-5220-2017-14-4-68-75

Views: 873


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5220 (Print)
ISSN 2658-7882 (Online)