Preview

Issues of Risk Analysis

Advanced search

Modeling of Organic Matter to Manage the Risks of Greenhouse Gas Emissions in Ecosystems

Abstract

The article is devoted to the features of the organic matter modelling. Carbon and nitrogen soil cycles, which are formed as a result of agricultural and natural use must be taken into account during mathematical simulation of arable and virgin soils. Mathematic, imitation and physical models are considered. Approaches to the quantitative assessment of the components of the biogeochemical carbon cycle, including the dual role of soil as a sink and a source of greenhouse gases, are considered. The interaction of the carbon- and nitrogen-mineralizing ability of soils is evaluated, and the possibility of assessing the influence of climatic and anthropogenic factors is shown. The biogeochemical technologies and models are suggested for managing the environ[1]mental risks related to GHG emissions.

About the Author

V. N. Bashkin
Institute of Physicochemical and Biological Problems in Soil Science RAS
Russian Federation

Vladimir N. Bashkin
 
Institutskaya str., 2-1, Pushchino, Moscow region, 
142290



References

1. Bashkin V.N. Modern biogeochemistry: Second edition: Environmental risk assessment . 2006. P. 1–444. https://doi.org/10.1007/1-4020-4586-7

2. Bezrukova M.G., Bykhovets S. S., Grabarnik P. Ya. [et al.] Analysis of uncertainty of parameters of a decomposition organic matter model: bayesian approach // Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2009;11(1–7):1424–1429. (In Russ.)

3. Campbell E.E., Paustian K. Current developments in soil organic matter modeling and the expansion of model applications: a review. 2015 Environ. Res. Lett. 10 123004. https://doi.org/10.1088/1748-9326/10/12/123004

4. Sukhoveeva O. E. Problems of modeling carbon biogeochemical cycle in agricultural landscapes // Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki. 2020;162(3):473–501. (In Russ.). https://doi.org/10.26907/2542-064X.2020.3.473-501

5. Friedlingstein P., Jones M.W., O’Sullivan M. et al. Global Carbon Budget 2019. Earth Syst. Sci. Data, 2019;11(4): 1783–1838. https://doi.org/10.5194/essd-11-1783-2019

6. Zavarzin G.A. (Ed.) Carbon Pools and Fluxes in Russian Terrestrial Ecosystems]. M.: Nauka. 2007. 315 p. (In Russ.)

7. Volodin E. M. Atmosphere-ocean general circulation model with the carbon cycle. Izv., Atmos. Oceanic Phys., 2007;43(3):266–280. https://doi.org/10.1134/S0001433807030024

8. Chen S., Zou J., Hu Z., Chen H., Lu Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agric. For. Meteorol., 2014;198–199:335–346. https://doi.org/10.1016/j.agrformet.2014.08.020

9. Sukhoveeva O.E., Karelin D.V. (2019). Parametrization of the model DNDC for evaluating components of carbon biogeochemical cycle in the European part of Russia. Vestnik of Saint Petersburg University. Earth Sciences, 64 (2), 363–384. https://doi.org/10.21638/spbu07.2019.211 (In Russ.)

10. Müller C., Bondeau A., Popp A., Waha K., Fader M. Climate Change Impacts on Agricultural Yields: Background Note to the World Development Report. Washington, DC, World Bank, 2010. 12 p. Available at: https://openknowledge.worldbank.org/handle/10986/9065

11. Cantelaube P., Terres J.M. Seasonal weather forecasts for crop yield modeling in Europe. Tellus, 2005;57(3):476–487. https://doi.org/10.3402/tellusa.v57i3.14669

12. Oettli P., Sultan B., Baron C., Vrac M. Are regional climate models relevant for crop yield prediction in West Africa? Environ. Res. Lett. 2011;6(1). art. 014008, pp. 1–9. https://doi.org/10.1088/1748–9326/6/1/014008

13. Gardner, J.B. and Drinkwater, L.E., The fate of nitrogen in grain cropping systems: a meta-analysis of 15N f i e l d e x p e r i m e nt s , E c ol . Appl . , 2 0 0 9 , vol . 1 9 , n o. 8 , pp. 2167–2184. https://doi.org/10.1890/08–1122.1

14. Bashkin V. N. Increasing the efficiency of nitrogen use: assessment of the nitrogen mineralizing ability of soils // Russian Agricultural Science. 2022;(3):45–50. (In Russ.). https://doi.org/10.31857/S2500262722030097

15. Bashkin V.N. Estimation of nitrogen mineralizing capacity in various soil-ecological regions // Use and Protection of Natural Resources of Russia. 2022;(3):117–122. (In Russ.)

16. Semenov V.M. Functions of carbon in the mineralization– immobilizationturnover of nitrogen in soil // Agrohimia. 2020;(6):78–96. (In Russ.). https://doi.org/10.31857/S0002188120060101

17. Kuznetsova T. V., Semenov A. V., Khodzhaeva A. K. [et al.] Nitrogen accumulation in the microbial biomass of gray forest soil during the decomposition of plant remains // Agrohimia. 2003;(10):3–11. (In Russ.)

18. Komarov A., Bykhovets S., Frolov P. [et al.] Romul_Hum model of soil organic matter formation coupled with soil biota activity. I. Problem formulation, model description, and testing // Ecological Modelling. 2017;345:113–124. https://doi.org/10.1016/j.ecolmodel.2016.08.007

19. Chertov O., Komarov A., Bykhovets S. [et al.] Romul_Hum — A model of soil organic matter formation coupling with soil biota activity. II. Parameterisation of the soil food web biota activity // Ecological Modelling. 2017;345:125–139. https://doi.org/10.1016/j.ecolmodel.2016.10.024

20. Modelling the biogenic cycles of carbon in forest soils taking into account spatial structure of plant communuties / I.V. Priputina, V.N. Shanin, P.V. Frolov, S. S. Bykhovets // In the collection of Materials of the XIII International Biogeochemical school-conference. The evolution of the biosphere, biogeochemical cycles and biogeochemical technologies: the connection between fundamental and applied research. Pushchino, September 25–28, 2023. Р. 150–153. (In Russ.)

21. Bashkin V, Alekseev A, Levin B, Mescherova E. Biogeochemical Technologies for Managing CO2 Flows in Agroecosystems. Adv Environ Eng Res 2023; 4(1): 012; https://doi.org/10.21926/aeer.2301012

22. Bashkin V.N., Priputina I.V., Galiullina R.A. Management of natural and environmental risks in the Context of Increasing Continentality of the Climate // Issues of Risk Analysis. 2023;20(2):68–85. (In Russ.) https://doi.org/10.32686/1812-5220-2023-20-2-68-85

23. Bashkin V.N., Galiullina R.A. Assessment of the risk of the environmental and human biological substrates by the pesticide DDT and its metabolites // Issues of Risk Analysis. 2023;20(4):28–42. (In Russ.). https://doi.org/10.32686/1812-5220-2023-20-4-28-42

24. Bashkin V.N. Biogeochemical Engineering: Technologies for Managing Environmental Risks. Adv Environ Eng Res 2022; 3(4): 040; doi:10.21926/aeer.2204040

25. Xu X, Xu Z, Chen L, Li C. How Does Industrial Waste Gas Emission Affect Health Care Expenditure in Different Regions of China: An Application of Bayesian Quantile Regression. International Journal of Environmental Research and Public Health. 2019; 16(15):2748. https://doi.org/10.3390/ijerph16152748


Review

For citations:


Bashkin V.N. Modeling of Organic Matter to Manage the Risks of Greenhouse Gas Emissions in Ecosystems. Issues of Risk Analysis. 2024;21(3):10-23. (In Russ.)

Views: 119


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5220 (Print)
ISSN 2658-7882 (Online)