Risk of Environmental Management in Countries of African Union
https://doi.org/10.32686/1812-5220-2022-19-2-54-85
Abstract
A comparative assessment and analysis of risk of environmental management across the African Union has been carried out. It is mainly characterized by two types of natural hazards: lithospheric — earthquakes, volcanism and related processes, and hydrometeorological — droughts, floods, accompanying landslides and soil degradation caused by global climate change and anthropogenic changes in the landscapes. A great hazard for tourist business, which is a basis of economy of island states with high enough level of development, is a sharp rise in the level of World Ocean as a result of melting of glaciers in Antarctica and Greenland. The sector most exposed to natural hazards in the African Union is agriculture, which suffers from soil erosion and degradation, droughts, desertifi cation and landslides. Vast areas of the African continent are at low risk of exploitation because they are uninhabited and undeveloped. Th ese are pristine areas with naturally developed landscapes where extreme natural processes and phenomena certainly occur, but there is simply no one and nothing to affect them. Good disaster resilience is related to the overall high level of economic development of the countries — Seychelles, Mauritius, South Africa, the political will of the governance structures and well-established security systems — Algeria, Tunisia, Egypt, and the growing infl uence of private capital in recent years on national disaster protection policies — Nigeria, Ghana, Cape Verde. Countries with low disaster resilience are the poorest countries in the world, with widespread famine, epidemics, forced migration due to ongoing military conflicts and coups d’état, poverty, etc. Correlation and regression analysis for the countries of the African Union has shown the dependence of the risk of environmental management coeffi cient on nominal GDP per capita per year, although the correlation coefficientis rather low. The highest risk is observed in the poorest countries that are unable to cope with natural disasters on their own, where natural hazards are widespread — Ethiopia, Rwanda, Burundi, Somalia and Eritrea. Low risk is ensured in countries with developed economies and eff ective government — Mauritius, South Africa, Algeria, Tunisia, etc.
Keywords
About the Authors
S. B. KuzminRussian Federation
Sergey B. Kuzmin
Siberian Branch of the Russian Academy of Sciences
Institute of Geography mem. V. B. Sotchava
664033
Ulanbatorskaya str., 1
Irkutsk
D. S. Uvarova
Russian Federation
Sergey B. Kuzmin
Siberian Branch of the Russian Academy of Sciences
Institute of Geography mem. V. B. Sotchava
664033
Ulanbatorskaya str., 1
Irkutsk
References
1. Бондаренко Л. В. Глобальное изменение климата и его последствия / Л. В. Бондаренко [и др.] // Вестник Российской экономической академии им. Г. В. Плеханова. – 2018. – № 2 (98). – С. 84—93. http://dx.doi.org/10.21686/2413-2829-2018-2-84-93. [Bondarenko L. V., Maslova O. V., Belkina A. V., Sukhareva K. V. Global climate changing and its after-effects // Vestnik of the Plekhanov Russian University of Economics. 2018; (2 (98)): 84-93 (In Russ.), http://dx.doi.org/10.21686/2413-2829-2018-2-84-93 ]
2. Иванов В. П. Медицинская экология / В. П. Иванов, Н. В. Иванова, А. В. Полонников. – СПб.: СпецЛит, 2012. – 320 c. [Ivanov V. P., Ivanova N. V., Polonnikov A. V. Medical ecology. SPb.: SpetsLit, 2012. 320 p. (In Russ.)]
3. Кнауб Р. В. Развитие сложных региональных систем под действием катастроф различного генезиса / Р. В. Кнауб, А. В. Игнатьева // Геополитика и экзогеодинамика регионов. – 2020. – Т. 6 (16), № 2. – С. 127—136. [Knaub R. V., Ignatieva A. V. The development of complex regional systemsunder the influence of disasters of various genesis // Geopolitics and exogeodynamics of regions. 2020; 6 (2): 127-136 (In Russ.)]
4. Кузьмин С. Б. Оценка риска хозяйственной деятельности в условиях стихийных бедствий по странам мира / С. Б. Кузьмин // Известия РАН. Серия географическая. – 2007. – № 4. – С. 86—96 [Kuzmin S. B. Evaluation of economic activity risk under condition of disasters along the Worls Countries // Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2007; (4): 86-96 (In Russ.)]
5. Кузьмин С. Б. Мировые оценки риска природопользования / С. Б. Кузьмин // Проблемы современной науки и образования. – 2015. – № 10 (40). – С. 120-125. [Kuzmin S. B. World assessments of the risk of environmental management // Problems of modern science and education. 2015; (10 (40)): 120-125 (In Russ.)]
6. Кузьмин С. Б. Оценка риска природопользования для субъектов Российской Федерации / С. Б. Кузьмин // Геориск. – 2016. – № 2. – С. 30—37. [Kuzmin S. B. Risk assessment for natural resource management in the subjects of Russian Federation // Georisk. 2016;(2): 30-37 (In Russ.)]
7. Кузьмин С. Б. Районирование Байкальского региона по опасным геоморфологическим процессам для стратегического планирования в Российской Федерации и Республике Монголия / С. Б. Кузьмин // Проблемы анализа риска. – 2018. – Т. 15, № 6. – С. 28-45, https://doi.org/10.32686/1812-5220-2018-15-18-35 [Kuzmin S. B. Zoning of Baikal region according to the hazardous geomorphological processes for strategy planning in Russian Federation and Republic of Mongolia // Issues of Risk Analysis. 2018; 15 (6): 28-45 (In Russ.) https://doi.org/10.32686/1812-5220-2018-15-18-35 ]
8. Кузьмин С. Б. Опасные геоморфологические процессы Приольхонья: проблемы безопасности хозяйственной деятельности на Байкальской природной территории / С. Б. Кузьмин // Проблемы безопасности и чрезвычайных ситуаций. – 2018. – № 2. – С. 105—120. [Kuzmin S. B. Hazardous geomorphological processes in preolkhon region: problems of safety of economic activity on the Baikal natural territory // Safety and emergency problems. 2018; (2): 105-120 (In Russ.)]
9. Кузьмин С. Б. Геоэкологические районы Иркутской области с опасными геоморфологическими процессами как сложные геоморфосистемы для оценки риска природопользования / С. Б. Кузьмин // Сложные системы. – 2018. – № 2 (27). – С. 30—57. [Kuzmin S. B. Geoecological areas of the Irkutsk region with the hazardous geomorphological processes as complex geomorphosystems for nature use risk assessment // The Complex Systems. 2018;(2 (27)): 30-57 (In Russ.)]
10. Кузьмин C. Б. Геоинформационное обеспечение и картографирование защищенности административно-территориальных субъектов от стихийных бедствий / С. Б. Кузьмин // Геоинформатика. – 2019. – № 1. – С. 53—66. [Kuzmin S. B. Geoinformation supplying and mapping of protection of administrative-territorial subjects from natural disasters // Geoinformatika. 2019; (1): 53-66 (In Russ.)]
11. Кузьмин С. Б. Сравнительная оценка риска природопользования в субъектах Российской Федерации / С. Б. Кузьмин // Проблемы анализа риска. – 2020. – Т. 17, № 5. – С. 48—71. https://doi.org/10.32686/1812-5220-2020-17-5-48-71. [Kuzmin S. B. Comparative nature management risk assessment in the Russian Federation districts // Issues of Risk Analysis. 2020; 17 (5): 48-71 (In Russ.), https://doi.org/10.32686/1812-5220-2020-17-5-48-71 ]
12. Кузьмин С. Б. Опасные природные процессы — глобальная угроза современности / С. Б. Кузьмин // Век глобализации. – 2021. – № 2 (38). – С. 17—29. DOI: 10.30884/vglob/2021.02.02. [Kuzmin S. B. Hazardous natural processes — a global threat of our time // The Age of Globalization. 2021; (2 (38)): 17-29 (In Russ.), DOI: 10.30884/vglob/2021.02.02 ]
13. Кузьмин С. Б. Оценка риска природопользования в странах Европейского Союза / С. Б. Кузьмин, Д. С. Уварова // Проблемы безопасности и чрезвычайных ситуаций. – 2021. – № 4. – С. 26-43. DOI: 10.36535/0869-4179-2021-04-2. [Kuzmin S. B., Uvarova D. S. Environmental risk assessment in countries of European Union // Safety and emergency problems. 2021; (4): 26-43 (In Russ.), DOI: 10.36535/0869-4179-2021-04-2 ]
14. Курбатова А. И. Воздействие глобального изменения климата на экосистемные функции стран Африки / А. И. Курбатова, А. М. Тарко, Е. В. Козлова // Аридные экосистемы. – 2017. – Т. 23, № 4 (73). – С. 3—10. [Kurbatova A. I., Tarko A. M., Kozlova E. V. Impacts of global climate change on ecosystem functions in African Countries // Arid ecosystems. 2017; 23 (4 (73)): 3-10 (In Russ.)]
15. Малинин В. Н. Изменения уровня Мирового океана в текущем столетии / В. Н. Малинин, С. М. Гордеева, О. И. Шевчук // Современные проблемы дистанционного зондирования Земли из космоса. – 2019. – Т. 16, № 5. – С. 9—22/ DOI: 10.21046/2070-7401-2019-16-5-9-22. [Malinin V. N., Gordeeva S. M., Shevchuk O. I. Changes in the global sea level in the current century // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019; 16 (5): 9-22 (In Russ.), DOI: 10.21046/2070-7401-2019-16-5-9-22 ]
16. Addo K. Monitoring sea level rise-induced hazards along the coast of Accra in Ghana // Natural Hazards. 2015; 78 (2): 1293-1307. DOI: 10.1007/s11069-015-1771-1.
17. Adger W. N., Butler C., Springett K. W. Moral reasoning in adaptation to climate change // Environmental Politics. 2017; 26: 371-390. DOI: 10.1080/09644016.2017.1287624.
18. AghaKouchak A., Huning L. S., Chiang F. et al. How do natural hazards cascade to cause disasters? // Nature. 2018; 561: 458-460. DOI: 10.1038/d41586-018-06783-6.
19. Arns A., Wahl T., Wolff C. et al. Non-linear interaction modulates global extreme sea levels, coastal flood exposure, and impacts // Natural Communications. 2020. 11. DOI: 10.1038/s41467-020-15752-5.
20. Berz G., Kron W., Loster T. R. et al. World map of natural hazards: a global view of the dis-tribution and intensity of significant exposures // Natural Hazards. 2001; (2-3): 443-465. DOI: 10.1023/A:1011193724026
21. Bevacqua E., Maraun D., Vousdoukas M. I. et al. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change // Science Advances. 2019 Vol. 5. Issue 9. eaaw5531. DOI: 10.1126/sciadv.aaw5531.
22. Bradley K., Mallick R., Andikagumi H. et al. Earthquaketriggered 2018 Palu Valley landslides enabled by wet rice cultivation // Natural Geosciences. 2019;12: 935-939. DOI: 10.1038/s41561-019-0444-1.
23. Bronselaer B., Winton M., Griffies S. M. et al. Change in future climate due to Antarctic meltwater // Nature. 2018; 564: 53-58. DOI: 10.1038/s41586-018-0712-z.
24. Cavaleri L., Bajo M., Barbariol F. et al. The 2019 flooding of Venice and its implications for future predictions // Oceanography. 2020; 33 (1): 42-49. DOI: 10.5670/oceanog.2020.105.
25. Cheng L., Abraham J., Trenberth K. E. et al. Upper Ocean Temperatures Hit Record High in 2020 // Advances in Atmospheric Sciences. 2021; 38: 523-530. DOI: 10.1007/s00376-021-0447-x.
26. Colenbrander D. Dissonant discourses: revealing South Africa’s policy-to-praxis challenges in the governance of coastal risk and vulnerability // Journal of Environmental Planning and Management. 2019; 62 (10): 1782-1801. DOI: 10.1080/09640568.2018.1515067.
27. Couasnon A., Eilander D., Muis S. et al. Measuring compound flood potential from river discharge and storm surge extremes at the global scale and its implications for flood hazard // Natural Hazards and Earth System Sciences. 2020; 20 (2): 489-504. DOI: 10.5194/nhess-20-489-2020.
28. Dawson D. A., Hunt A., Shaw J., Gehrels W. R. The Economic Value of Climate Information in Adaptation Decisions: Learning in the Sea-level Rise and Coastal Infrastructure Context // Ecological Economics. 2018; 150: 1-10. DOI: 10.1016/j.ecolecon.2018.03.027.
29. Dilley M., Chen R. S., Deichmann U. et al. Natural Disaster Hotspots. A Global Risk Analysis. Washington. The World Bank Press. 2005. 31 p.
30. Dziadek R., Ferraccioli F. & Gohl K. High geothermal heat flow beneath Thwaites Glacier in West Antarctica inferred from aeromagnetic data // Communications Earth and Environment. 2021;162 (2). DOI: 10.1038/s43247-021-00242-3.
31. Edwards T. L., Brandon M. A., Durand G. et al. Revisiting Antarctic ice loss due to marine ice-cliff instability // Nature. 2019; 566: 58-64. DOI: 10.1038/s41586-019-0901-4.
32. Frederikse T., Landerer F., Caron L. et al. The causes of sea-level rise since 1900 // Nature. 2020; 584: 393-397. DOI: 10.1038/s41586-020-2591-3.
33. Gallina V., Torresan S., Critto A. et al. A review of multirisk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment // Journal of Environmental Management. 2016; 168: 123-132. DOI: 10.1016/j.jenvman.2015.11.011.
34. Geber M. E., Sultan M., Becker R. et al. Assessing Land Deformation and Sea Encroachment in the Nile Delta: A Radar Interferometric and Inundation Modeling Approach // Journal of Geophysical Research: Solid Earth. 2018;123 (4): 3208-3224. DOI: 10.1002/2017jb015084.
35. Golledge N. R., Keller E. D., Gomez N. et al. Global environmental consequences of twenty-first-century ice-sheet melt // Nature. 2019; 566: 65-72. DOI: 10.1038/s41586-019-0889-9.
36. Halkos G., Zisiadou A. Examining the natural environmental hazards over the last century // Economics of Disasters and Climate Change. 2019; 3: 119-150. DOI: 10.1007/s41885-018-0037-2.
37. Horton B. P., Kopp R. E., Garner A. J. et al. Mapping Sea-Level Change in Time, Space, and Probability // Annual Review of Environment and Resources. 2018; 43: 481-521. DOI: 10.1146/annurev-environ-102017-025826.
38. Horton B. P., Khan N. S., Cahill N. et al. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey // Climate and Atmospheric Science. 2020; 3 (18). DOI: 10.1038/s41612-020-0121-5.
39. Ikeuchi H., Hirabayashi Y., Yamazaki D. et al. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh // Journal of Advances in Modelling of Earth Systems. 2017; 9 (4): 1847-1862. DOI: 10.1002/2017MS000943.
40. King M. D., Howat I. M., Candela S. G. et al. Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat // Nature Communications. Earth & Environment. 2020. DOI: 10.1038/s43247-020-0001-2
41. Korswagen P. A., Jonkman S. N., Terwel K. C. Probabilistic assessment of structural damage from coupled multi-hazards // Structural Safety. 2019;76:135-148. DOI: 10.1016/j.strusafe.2018.08.001.
42. Kossin J. P. A global slowdown of tropical-cyclone translation speed // Nature. 2018;558:104-107. DOI: 10.1038/s41586-018-0158-3.
43. Lindsay J. M., Robertson R. E. A. Integrating Volcanic Hazard Data in a Systematic Approach to Develop Volcanic Hazard Maps in the Lesser Antilles // Frontiers of the Earth Sciences. 2018; 6: 42. DOI: 10.3389/feart.2018.00042.
44. Marc O., Hovius N., Meunier P. et al. Transient Changes of Landslide Rates after Earthquakes // Geology. 2015; 43: 883-886. DOI: 10.1130/G36961.1.
45. Mafaranga H. Sea level rise may erode development in Africa // Eos. 2020. Vol. 101. DOI: 10.1029/2020EO151568
46. Massom R. A., Scambos T. A., Bennetts L. G. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell // Nature. 2018; 558: 383-389. DOI: 10.1038/s41586-018-0212-1.
47. Mucova S. A. R., Azeiteiro U. M., Filho W. L. et al. Approaching Sea-Level Rise Change: Strengthening Local Responses to Sea-Level Rise and Coping with Climate Change in Northern Mozambique // Journal of Marine Science Engineering. 2021; 9 (2). DOI: 10.3390/jmse9020205.
48. Neri M., Le Cozannet G., Thierry P. et al. A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines) // Natural Hazards and Earth System Sciences. 2013; 13 (8): 1929-1943. DOI: 10.5194/nhess-13-1929-2013.
49. Oppenheimer M., Glavovic B. C., Hinkel J. et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities // IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Eds. Pörtner H.-O., Roberts D. C., Masson-Delmotte V. et al. 2019. P. 321-445.
50. Pattyn F., Ritz C., Hanna E. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming // Nature Climate Change. 2018; 8: 1053-1061. DOI: 10.1038/s41558-018-0305-8.
51. Ragoonaden S., Seewoobaduth J., Cheenacunnan I. Recent acceleration of Sea level rise in Mauritius and Rodrigues // Western Indian Ocean Journal of Marine Science. 2017. Special Issue 1. P. 51-65.
52. Rohan P., Kironmala C., Chandra D. S. Spatial variation of multi-hazard susceptibility across India // Disaster Advances. 2020;13 (4): 59-71.
53. Ryan J. C., Smith L. C., Van As D. et al. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure // Science Advances. 2019; 5 (3). DOI: 10.1126/sciadv.aav3738.
54. Sandri L., Thouret J.-C., Constantinescu R. et al. Long-term multi-hazard assessment for El Misti Volcano (Peru) // Bulletin of Volcanology. 2014; 76: 771-797. DOI: 10.1007/s00445-013-0771-9.
55. Sarr C., Ndour M., Haddad M., Sakho I. Estimation of Sea Level Rise on the West African Coasts: Case of Senegal, Mauritania and Cape Verde // International Journal of Geosciences. 2021; 1 (2): 121-137. DOI: 10.4236/ijg.2021.122008.
56. Schlegel N.-J., Seroussi H., Schodlok M. P. et al. Exploration of Antarctic Ice Sheet 100-year contribution to sea level rise and associated model uncertainties using the ISSM framework // The Cryosphere. 2018; 12 (1): 3511-3534. DOI: 10.5194/tc-12-3511-2018.
57. Shaltout M., Tonbol K., Omstedt A. Sea level change and projected future flooding along the Egyptian Mediterranean coast // Oceanology. 2015; 57 (4): 293-307. DOI: 10.1016/J.OCEANO.2015.06.004.
58. Smith A. M., Bundy S. C., Cooper J. A. G. Apparent dynamic stability of the southeast African coast despite sea level rise // Earth Surface Processes and Landforms. 2016; 41 (11): 1494-1503. DOI: 10.1002/esp.3917.
59. Sono D., Ye W., Ying J. Assessing the Climate Resilience of Sub-Saharan Africa (SSA): A Metric-Based Approach // Land. 2021; 10 (11). DOI: 10.3390/land10111205.
60. The Geography of Climate Change Adaptation in Urban Africa. Eds.: Cobbinah P. B. & Addaney M. Palgrave Macmillan Press, Gewerbestrasse 11, 6330 Cham, Switzerland. 2019. 548 p. DOI: 10.1007/978-3-030-04873-0.
61. UNDRR: Global Assessment Report 2009. Risk and Poverty in a Changing Climate. Global Assessment Report on Disaster Risk Reduction. UN Office for Disaster Risk Reduction. Geneva. 2009. 207 р.
62. UNDRR: GAR 2011. Global Assessment Report on Disaster Risk Reduction. Revealing Risk. Redefining Development. UN Office for Disaster Risk Reduction. Geneva. 2011. 178 p.
63. UNDRR: GAR 2013. From Shared Risk to Shared Value: the Business Case for Disaster Risk Reduction. UN Office for Disaster Risk Reduction. Geneva. 2013. 171 p.
64. UNDRR: GAR 2015. Making Development Sustainable: The Future of Disaster Risk Management. UN Office for Disaster Risk Reduction. Geneva. 2015. 316 p.
65. UNDRR: GAR 2017. Global Assessment Report on Disaster Risk Reduction. UN Office for Disaster Risk Reduction. Geneva. 2017. 196 p.
66. UNDRR: GAR 2019. Global Assessment Report on Disaster Risk Reduction. UN Office for Disaster Risk Reduction. Geneva. 2019. 470 p.
67. UNDRR: GAR 2021. Global Assessment Report on Disaster Risk Reduction. UN Office for Disaster Risk Reduction. Geneva. 2021. 206 p.
68. Von Schuckmann K., Le Traon P.-Y., Smith N. et al. Copernicus Marine Service Ocean State Report, Issue 5 // Journal of Operational Oceanography. 2021; 14: 1-185. DOI: 10.1080/1755876X.2021.1946240.
69. Vousdoukas M. I., Mentaschi L., Voukouvalas E. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard // Natural Communications. 2018; 9. Article number 2360. DOI: 10.1038/s41467-018-04692-w.
70. Ward P. J., Couasnon A., Eilander D. et al. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries // Environmental Research Letters. 2018; 13 (8): 1-13. DOI: 10.1088/1748-9326/aad400.
71. Ward P. J., Blauhut V., Bloemendaal N. et al. Natural hazard risk assessments at the glob-al scale // Natural Hazards and Earth System Science. 2020; 20 (4): 1069-1096. DOI: 10.5194/nhess-20-1069-2020.
72. Watkinson I. M., Hall R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides // Natural Geosciences. 2019;12:940-945. DOI: 10.1038/s41561-019-0448-x.
73. Yu X., Rinke A., Dorn W. et al. Evaluation of Arctic sea ice drift and its dependency on near-surface wind and sea ice conditions in the coupled regional climate model HIRHAM–NAOSIM // Cryosphere. 2020; 14: 1727-1746. DOI: 10.5194/tc-14-1727-2020.
74. Zscheischler J., Westra S., Van den Hurk B. J. J. et al. Future climate risk from compound events // Nature Climate Change. 2018; 8: 469-477. DOI: 10.1038/s41558-018-0156-3.
Review
For citations:
Kuzmin S.B., Uvarova D.S. Risk of Environmental Management in Countries of African Union. Issues of Risk Analysis. 2022;19(2):54-85. (In Russ.) https://doi.org/10.32686/1812-5220-2022-19-2-54-85