Preview

Issues of Risk Analysis

Advanced search

Digital identification system’s risk classification (based on foreign experience)

https://doi.org/10.32686/1812-5220-2023-20-1-64-77

Abstract

This article is devoted to the development of a classification of the risks of projects for the introduction and development of digital identification systems for citizens, based on foreign experience. When forming the sample, the following similar conditions to those in Russia were taken into account: the level of digital development; the level of digital literacy and income of the population; the presence of close cooperation in the economic sphere.

Studies on the topic are limited and fragmentary, devoted mainly to describing the risks of specific national systems, the risks are not systematized, and there is no list of the most significant risks to the digital identification system of citizens of the Russian Federation.

Research methodology and description of the sample: critical analysis.

The faceted classification method was used to develop the classification; the assessment of the most likely risks on the way of the system formation in Russia is based on the data of the metaanalysis of studies of the level of digital development and literacy of citizens.

It was found that the risks are of a complex composite nature; the degree of citizens’ resistance to digital identification systems does not depend on the general level of digital literacy of the population, but the most negatively inclined citizens are among people with high digital literacy or IT specialists; for the project being implemented in Russia, it is most important to ensure the security of citizens’ personal data and the possibility for citizens to control their digital doubles, training in using Internet technologies, legal, ethical and technological aspects.

About the Author

O. V. Bashkirova
Financial University under the Government of the Russian Federation
Russian Federation

Olga V. Bashkirova

4th Veshnyakovsky pr., 4, Moscow, 109456



References

1. Choudhury Z.H., Munir Ahamed Rabbani M. (2020). Biometric Passport Security by Applying Encrypted Biometric Data Embedded in the QR Code. In: Raju, K., Senkerik, R., Lanka, S., Rajagopal, V. (eds) Data Engineering and Communication Technology. Advances in Intelligent Systems and Computing, vol 1079. Springer, Singapore. https://doi.org/10.1007/978-981-15-1097-7_5

2. Oliveira M., Honório T., Reis C.I., Maximiano M. (2022). Immunity Passport Ledger. In:, et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_50

3. Dokuchaev V.A., Maklachkova V.V., Statev V.Yu. Digitalization of the personal data subject // T-COMM. 2020;14(6):27-32, (In Russ.), https://doi.org/10.36724/2072-8735-2020-14-6-27-32

4. Kondakov A.M., Kostyleva A.A. Digital identity, digital self-identification, digital profile: problem statement // RUDN Journal of Informatization in Education. 2019;16(3):207-218, (In Russ.), https://doi.org/10.22363/2312-8631-2019-16-3-207-218

5. Choudhury Z.H., Rabbani M.M.A. (2020). Biometric Passport Security Using Encrypted Biometric Data Encoded in the HCC2D Code. In: Pandian A., Senjyu T., Islam S., Wang H. (eds) Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI — 2018). ICCBI 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-24643-3_115

6. Kutner A., Navetta D., Wood Ch. (2021) ‘China: China’s New National Privacy Law: The PIPL’. MONDAQ. URL: https://www.mondaq.com/china/data-protection/1137330/china39s-new-national-privacy-law-the-pipl (Дата обра- щения: 24.01.2022).

7. Wang Victoria & Tucker John. (2021). ‘I am not a number’: Conceptualising digital identity in digital surveillance. Technology in Society. 67. doi: 10.1016/j.techsoc.2021.101772

8. Auxier B., Rainie L., Anderson M., Perrin A., Kumar M., Turner E. (2019) ‘Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over Their Personal Information’ Pew Research Center. URL: https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/ (Дата обращения: 01.02.2022).

9. Matzkuhn D., (2018) ‘China ermöglicht Personalausweis als App’ CANCOM.INFO. URL: https://www.cancom.info/2018/01/china-ermoeglicht-personalausweis-als-app/ (Дата обращения: 18.03.2022).

10. Ramakumar R. (2010). The Unique ID Project in India: A Skeptical Note. In: Kumar, A., Zhang, D. (eds) Ethics and Policy of Biometrics. ICEB 2010. Lecture Notes in Computer Science, vol 6005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12595-9_20

11. Khera R. (2013). A ‘Cost-Benefi t’ analysis of UID. 48. 13—15.

12. Hennion Ch., Mis J.-M. (2020) Rapport d’information déposé en application de l’article 145 du règlement en conclusion des travaux de la mission d’information commune sur l’identité numérique. URL: https://www.assemblee-nationale.fr/dyn/15/rapports/micnum/l15b3190_rapport-information (Дата обращения: 14.02.2022).

13. Sookman B., Kerr G., Iatrou N., Leslie P. (2021) “The CPPA’s Privacy Law Enforcement Regime”. URL: https://www.mccarthy.ca/en/insights/blogs/techlex/cppas-privacy-law-enforcement-regime (Дата обращения: 18.03.2022).

14. Baghel V. S., Prakash S. & Agrawal I. An enhanced fuzzy vault to secure the fingerprint templates. Multimed Tools Appl 80, 33055–33073 (2021). https://doi.org/10.1007/s11042-021-11325-w

15. Sun Z., Li, Q., Liu Y., Zhu Y. (2021). Opportunities and Challenges for Biometrics. In: China’s e-Science Blue Book 2020. Springer, Singapore. https://doi.org/10.1007/978-981-15-8342-1_6

16. Tchagna Kouanou A., Tchito Tchapga C., Sone Ekonde M. et al. Securing Data in an Internet of Things Network Using Blockchain Technology: Smart Home Case. SN COMPUT. SCI. 3, 167 (2022). https://doi.org/10.1007/s42979-022-01065-5

17. Auletta V., Blundo C., De Caro A., De Cristofaro E., Persiano G., Visconti, I. (2010). Increasing Privacy Threats in the Cyberspace: The Case of Italian E-Passports. In:, et al. Financial Cryptography and Data Security. FC 2010. Lecture Notes in Computer Science, vol 6054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14992-4_9

18. Yakovlev A.N., Danilova A. S. JTAG and Chip-Off Technologies in Computer Forensics // Theory and Practice of Forensic Science. 2018;13(3):109-115. (In Russ.) https://doi.org/10.30764/1819-2785-2018-13-3-109-115

19. Liu Y., James H., Gupta O. et al. MRZ code extraction from visa and passport documents using convolutional neural networks. IJDAR 25, 29–39 (2022). https://doi.org/10.1007/s10032-021-00384-2

20. Kenneth M.O., Sulaimon B.A., Abdulhamid S.M., Ochei L.C. (2022). A Systematic Literature Review on Face Morphing Attack Detection (MAD). In: Misra S., Arumugam C. (eds) Illumination of Artificial Intelligence in Cybersecurity and Forensics. Lecture Notes on Data Engineering and Communications Technologies, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-93453-8_7

21. Tolosana R., Vera-Rodriguez R., Fierrez J., Morales A., Ortega-Garcia J. (2022). An Introduction to Digital Face Manipulation. In: Rathgeb C., Tolosana R., Vera-Rodriguez R., Busch C. (eds) Handbook of Digital Face Manipulation and Detection. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-87664-7_1

22. Roychoudhury A. (2016) ‘Aadhaar legislation might be a Money Bill’ Rediff. URL: https://www.rediff.com/business/report/budget-2016-aadhaar-legislation-might-be-a-money-bill/20160302.htm (Дата обращения: 24.01.2022).

23. Chernysheva E. (2022) “The Ministry of Digital Science proposed collecting biometrics of Russians without their consent from RBC”. https://www.rbc.ru/politics/09/08/2022/62f1e7fb9a7947174c3125aa. (Date of placement: 09.08.2022; Аccessed: 14.08.2022) (In Russ.)

24. Leven E, Suslov A. (2020) “Level of digital skills in Russia and EU countries”, ISIEZ HSE. (Аccessed: 13.05.2022) (In Russ.)


Review

For citations:


Bashkirova O.V. Digital identification system’s risk classification (based on foreign experience). Issues of Risk Analysis. 2023;20(1):64-77. (In Russ.) https://doi.org/10.32686/1812-5220-2023-20-1-64-77

Views: 505


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5220 (Print)
ISSN 2658-7882 (Online)