Preview

Issues of Risk Analysis

Advanced search

Global Food Security and Fundamental Role of Fertilizer Part 2. Fundamental Role of Fertilizer in Food Production

https://doi.org/10.32686/1812-5220-2022-19-4-10-29

Abstract

The article shows the fundamental role of mineral fertilizers in solving the problems of global food security. Due to a number of reasons, primarily the increase in the cost of fertilizers and restrictions on their supply, as well as sanctions restrictions on the supply of raw materials, techniques for more efficient use of fertilizers are given. The role of precision agriculture is characterized, including issues of increasing the efficiency of fertilizer use. The results of agrochemical experiments with various crops and in various soil and environmental conditions are presented, their agronomic and economic efficiency is shown. Further directions of work on the evaluation of the effectiveness of the use of fertilizers, in particular nitrogen, are given. The risk assessment and management measures are also noted.

About the Authors

V. N. Bashkin
Institute of Physico-Chemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Russian Federation

Bashkin Vladimir N.: Doctor of Biological Sciences, Professor, Chief Researcher 

ResearcherID: J-4621-2018

Scopus Author ID: 7005340339 

Institutskaya str., 2, Pushchino, Moscow region, 142290 



A. O. Alekseev
Institute of Physico-Chemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Russian Federation

Alekseev Andrey O.: Corresponding Member of the Russian Academy of Sciences, Doctor of Biological Sciences, Chief Researcher, Head of the Department, Head

 Scopus ID: 7202889447

ResearcherID: L-1162-2014 

 AuthorID: 58747 
Institutskaya str., 2, Pushchino, Moscow region, 142290



References

1. Perelman F.I., Kasimov N.S. Geochemistry of landscape. Moscow: Astraea-2000, 1999. 768 p.

2. Bashkin V.N. Agrogeochemistry of nitrogen. Pushchino: ONTI NCBI, 1987. 272 p.

3. Bashkin V.N. Modern Biogeochemistry (textbook). Kluwer Academic Publishers. 2002. 572 pp.

4. O’Neill P. M., Shanahan J. F., Schepers J. S. Caldwell B. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen // Agron. J. 2004. 96. P. 1660—1667. doi: 10.2134/agronj2004.1660

5. Elser J. J., Bracken M. E. S., Cleland E. E., Gruner D. S., Harpole W. S., Hillebrand H., et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems // Ecol. Lett. 2007. 10. P. 1135—1142. doi: 10.1111/j.1461-0248.2007.01113.x

6. Kudeyarov V.N. Agrogeochemical cycles of carbon and nitrogen in modern agriculture of Russia // Agrochemistry. 2019. № 12. C. 3—15 DOI: 10.1134/S000218811912007X

7. Borlaug N. “The Green Revolution Revisited and the Road Ahead”. Anniversary Nobel Lecture, Norwegian Nobel Institute in Oslo, Norway. September 8, 2000. Retrieved October 14, 2016.

8. Smil V. Nitrogen and food production: Proteins for human diets // Ambio 2002. V. 31. P. 126—131. doi: 10.1579/0044-7447-31.2.126

9. Godfray H. C. J., Beddington J. R., Crute I. R., Haddad L., Lawrence D., Muir F., et al. Food security: the challenge of feeding 9 billion people // Science 2010. V. 327, P. 812—818. doi: 10.1126/science.1185383

10. FAO. World fertilizer trends and outlook to 2022. Rome. 2019.

11. Wassmann R., Neue H. U., Ladha J. K., Aulakh M. S. “Mitigating greenhouse gas emissions from rice-wheat cropping systems in Asia,” in Tropical Agriculture in Transition—Opportunities for Mitigating Greenhouse Gas Emissions? (Dordrecht: Springer), 2004. P. 65—90. doi: 10.1007/978-94-017-3604-6_4

12. Food security and nutrition around the world // The International Monetary Fund, the World Bank, the United Nations World Food Programme and the World Trade Organization. 2022.

13. Tserling V.V. Diagnostics of nutrition of agricultural crops: Handbook. M.: Agropromizdat, 1990. — 235 p. (In Russ.)

14. Justes E., Mary B., Jean-Marc M., Machet J., Huché-Thélier L. Determination of a critical nitrogen dilution curve for winter wheat crops // Ann. Bot. 1994. V. 74. P. 397—407. doi: 10.1006/anbo.1994.1133

15. Varvel G. E., Schepers J. S., Francis D. D. Ability for in-season correction of nitrogen deficiency in corn using chlorophyll meters // Soil Sci. Soc. Am. J. 1997. V. 61. P. 1233—1239. doi: 10.2136/sssaj1997.03615995006100040032x

16. Pinter Jr, P. J., Hatfield J. L., Schepers J. S., Barnes E. M., Moran M. S. Remote sensing for crop management // Photogramm. Eng. Rem. 2003. V. S 69. P. 647—664. doi: 10.14358/PERS.69.6.647

17. Ladha J. K., Pathak H., Krupnik T. J., Six J., van Kessel C. V. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects // Adv. Agron. 2005. V. 87. P. 85—156. doi: 10.1016/S0065-2113(05)87003-8

18. Yao X., Huang Y., Shang G., Zhou C., Cheng T., Tian Y. Evaluation of six algorithms to monitor wheat leaf nitrogen concentration // Remote Sens. 2015. V. 7. P. 14939—14966. doi.10.3390/rs71114939 doi: 10.3390/rs71114939

19. Magney T. S., Eitel J. U. H., Vierling L. A. Mapping wheat nitrogen uptake from RapidEye vegetation indices // Precis. Agric. 2017. V. 18. P. 429—451. doi: 10.1007/s11119-016-9463-8

20. Fu Y., Yang G., Pu R., Li Z., Li H., Xu X. An overview of crop nitrogen status assessment using hyperspectral remote sensing: Current status and perspectives // Eur. J. Agron. 2021. V. 124. P. 126241. doi: 10.1016/j.eja.2021.126241

21. Zhang H.-Y., Ren X.-X., Zhou Y., Wu Y.-P., He L., Heng Y.-R. Remotely assessing photosynthetic nitrogen use efficiency with in situ hyperspectral remote sensing in winter wheat // Eur. J. Agron. 2018. V. 101. P. 90—100. doi: 10.1016/j.eja.2018.08.010

22. Chlingaryan A., Sukkarieh S., Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review // Comp. Electronics Agric. 2018. V. 151. P. 61—69. doi: 10.1016/j.compag.2018.05.012

23. Morris T. F., Murrell T. S., Beegle D. B., Camberato J. J., Ferguson R. B. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement // Agron. J. 2018. V. 110. P. 1—37. doi: 10.2134/agronj2017.02.0112

24. Schroeck A. M., Gaube V., Haas E., Winiwarter W. Estimating nitrogen flows of agricultural soils at a landscape level — A modelling study of the Upper Enns Valley, a long-term socio-ecological research region in Austria // Sci. Total Environ. 2019. V. 665. P. 275—289. doi: 10.1016/j.scitotenv.2019.02.071

25. Bashkin V.N. Modern Biogeochemistry: Environmental Risk Assessment, 2d Edition. CIP, China — Chinese translation, 2009. 268 pp.

26. Erisman J. W., Leach A., Bleeker A., Atwell B., Cattaneo L., Galloway J. An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production-consumption chain // Sustainability. 2018. V. 10:925. doi: 10.3390/su10040925

27. Syswerda S., Basso B., Hamilton S., Tausig J., Robertson G. Long-term nitrate loss along an agricultural intensity gradient in the Upper Midwest USA. Agric. Ecosyst. Environ // 2012. V. 149. P. 10—19. doi: 10.1016/j.agee.2011.12.007

28. Hess M. C., Mesléard F., Buisson E. Priority effects: Emerging principles for invasive plant species management // Ecol. Eng. 2019. V. 127. P. 48—57. doi: 10.1016/j.ecoleng.2018.11.011

29. van Kessel C., Venterea R., Six J., Adviento-Borbe M. A., Linquist B., J. Climate, duration, and N placement determine N 2O emissions in reduced tillage systems: a metaanalysis // Glob. Change Biol. 2013. V. 19 P. 33—44. doi: 10.1111/j.1365-2486.2012.02779.x

30. Gelfand I., Shcherbak I., Millar N., Kravchenko A.N., Robertson G. P. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA // Glob. Change Biol. 2016. V. 22. P. 3594—3607. doi: 10.1111/gcb.13426

31. Zhang X., Davidson E.A., Mauzerall D.L., Searchinger T.D., Dumas P., Shen Y. Managing nitrogen for sustainable development // Nature, 2015. V. 528. P. 51—59. doi: 10.1038/nature15743

32. Lassaletta L., Billen G., Grizzetti B., Anglade J., Garnier J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland // Environ. Res. Lett. 2014. V. 9:105011. doi: 10.1088/1748-9326/9/10/105011

33. Camberato J., Nielsen R., Joern B. Nitrogen Management Guidelines for Corn in Indiana. Purdue NitrogenManagement Update. Available online at: www.agry.purdue.edu/ext/corn/news/timeless/nitrogenmgmt.pdf, 2017.

34. Harrison M. T., Roggero P. P., Zavattaro L. Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM // Environ. Model Softw. 2019. V. 117. P. 109—133. doi: 10.1016/j.envsoft.2019.03.010

35. Galán-Martín Á., Vaskan P., Antón A., Esteller L. J., Guillén-Gosálbez G. Multi-objective optimization of rainfed and irrigated agricultural areas considering production and environmental criteria: a case study of wheat production in Spain // J. Clean. Prod. 2017. V. 140. P. 816—830. doi: 10.1016/j.jclepro.2016.06.099

36. Moeinizade S., Kusmec A., Hu G., Wang L., Schnable, P. S. Multitrait genomic selection methods for crop improvement // Genetics, 2020. V. 215. P. 931—945. doi: 10.1534/genetics.120.303305

37. Udvardi M., Below F.E., Castellano M.J., Eagle A.J., Giller K.E., Ladha J.K., Liu X., Maaz T.M., Nova-Franco B., Raghuram N., Robertson G.P., Roy S., Saha M., Schmidt S., Tegeder M., York L.M. and Peters J.W. A Research Road Map for Responsible Use of Agricultural Nitrogen // Front. Sustain. Food Syst. 2021. V. 5:660155. doi: 10.3389/fsufs.2021.660155

38. Bashkin V.N. Improving the efficiency of nitrogen use: problems and solutions. Message 1. Agrogeochemical approaches // Agrochemistry. 2022. No 7.

39. Peliy A.F., Nosov V.V., Sterkin M.V., Dubrovskikh L.N., Nadezhkin S.M.. Modern mineral fertilizers PhosAgro on carrot in the open ground of Non-Chernozem zone // Potato and vegetables. 2021. No. 4. Pp. 14—16. https://doi.org/10.25630/PAV.2021.71.99.001 (In Russ.).

40. Peliy A.F., Dubrovskikh L.N., Sterkin M.V., Nadezhdin S.M. Modern mineral fertilizers of PhosAgro on white cabbage in the open ground of non-chernozemic region // Potatoes and vegetables. 2021. No. 3. pp. 22—24. DOI: 10.25630/PAV.2021.83.57.005.

41. Paliy A.F., Nosov V.V., Sterkin M.V., Nadezhkin S.M. The use of modern mineral fertilizers produced by PhosAgro to table beet in the open field in the Non‒Chernozem zone of Russia // Potato and vegetables. 2021. No. 6. Pp. 23—25. https://doi.org/10.25630/PAV.2021.68.36.005 (In Russ.).

42. Grankina A.O., Peliy A.F., Nosov V.V., Demidov V.V., Sterkin M.V. The use of a novel silicon-containing agrochemical to potato in the Non‒Chernozem zone of Russia // Potato and vegetables. 2021. No. 7. Pp. 26—28. https://doi.org/10.25630/PAV.2021.19.13.005 (In Russ.).

43. Peliy A.F., Nosov V.V., Shatohin A.Yu., Grankina A.O., Demidov D.V., Sterkin М.V. The use of a novel siliconcontaining agrochemical PHOSAGRO to winter wheat in the non-chernozem zone of Russia // International Agricultural Journal, 2021, volume 64, No. 6 (384), pp. 42—45.

44. Universita degli studi di Milano. Results from the 2017/18 wheat experiments. Final report. 2018. 51 pp.

45. Singh A.K., Manibhushan, Meena M.K., Upadhyaya A., 2012. Effect of sulphur and zinc on rice performance and nutrient dynamics in plants and soil of indo gangetic plains. Journal of Agricultural Science, 4, 11.

46. Salvagiotti, F., Miralles, D.J., 2008. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. European Journal of Agronomy, 28, 282-290.

47. Järvan, M., Edesi, L., Adamson, A., 2011. Effect of sulphur fertilization on grain yield and yield components of winter wheat. Acta Agricolturae Scandinavica B, 62, 401-409.

48. Kato, Y., 2012. Grain nitrogen concentration in wheat grown under intensive organic manure application on andosols in Central Japan. Plant Production Science, 15, 40-47.

49. Klikocka, H., Cybulska, M., Barczak, B., Narolski, B., Szostak, B., Kobialka, A., Nowak, A., Wójcik, E., 2016. The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant, Soil and Environment, 62, 230-236.

50. Lerner, S.E., Seghezzo, M.L., Molfese, E.R., Ponzio, N.R., Cogliatti, M., Rogers, W.J., 2006. N- and S- fertiliser effects on grain composition, industrial quality and end-use in durum wheat. Journal of Cereal Science, 44, 2-11.

51. Mudarisov, F.A., Kostin, V.I., Sadygova, M.K., Minacheva, Eh.Sh. (2020). Influence of sulfur-containing nitrogen fertilizers on the quality of winter wheat grain protein]. Sakharnaya svekla [Sugar beet], No. 2, pp. 38-42. doi: 10.25802/SB.2020.21.54.007

52. Kudeyarov V.N., Bashkin V.N., Kudeyarova A.Yu., Bochkarev A.N. Ecological problems of mineral fertilizers. Moscow: Nauka, 1984, 212 p.

53. Bashkin V.N., Kasimov N.S. Biogeochemistry of nitrogen. Moscow: Scientific World. 2004. 647 p.Bashkin V.N. Environmental Chemistry: Asian Lessons (textbook), Kluwer Academic Publishers, 2003. 472 pp.

54. Sutton M. A., Raghuram N., Adhya T., Baron J., Cox C., de Vries W. “The nitrogen fix: from nitrogen cycle pollution to nitrogen circular economy,” in Frontiers 2018/19: Emerging Issues of Environmental Concern (Nairobi: United Nations Environment Programme), 2019. P. 52—65.

55. Kovda V.A. Biogeochemical cycles in nature and their human violations. M.: Nauka. C. 3-70.

56. Kudeyarov V.N. Nitrogen cycle in soil and fertilizer efficiency. M.: Nauka, 1989. 216 p.

57. Bashkin V.N. Modern Biogeochemistry (textbook). Kluwer Academic Publishers, 2002. 572 pp.

58. Rockstrom J., Steffen W., Noone K., Persson A., Chapin F. S., III, Lambin E. F. A safe operating space for humanity // Nature. 2009. V. 461, P. 472—475. doi: 10.1038/461472a

59. Canfield D. E., Glazer A. N., Falkowski P. G. The evolution and future of earth’s nitrogen cycle // Science, 2010. V. 330. P. 192—196. doi: 10.1126/science.118612028

60. Steffen W., Richardson K., Rockstrom J., Cornell S. E., Fetzer I., Bennett E. M. Planetary boundaries: Guiding human development on a changing planet // Science, 2015. V. 347. P. 6223. doi: 10.1126/science.1259855

61. Kanter D., Winiwarter W., Bodirsky B., Bouwman L., Boyer E., Buckle S. A framework for nitrogen futures in the shared socioeconomic pathways // Glob. Environ. Change, 2020. V. 61. P. 102029. doi: 10.1016/j.gloenvcha.2019.102029

62. Sutton M. A., Oenema O., Erisman J. W., Leip A., van Grinsven H., Winiwarter W. Too much of a good thing // Nature, 2011. V. 472. P. 159—161. doi: 10.1038/472159a

63. Winiwarter W., Höglund-Isaksson L., Klimont Z., Schöpp W., Amann M. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide // Environ. Res. Lett. 2018. V. 13:014011. doi: 10.1088/1748-9326/aa9ec9

64. NOAA. Global Monitoring Laboratory, Dataset for nitrous oxide. 2021. Available online at: https://www.esrl.noaa.gov/gmd/hats/combined/N2O.html (accessed April 9, 2021).

65. Smil V. Nitrogen and food production: Proteins for human diets // Ambio 2002. V. 31. P. 126—131. doi: 10.1579/0044-7447-31.2.126

66. Godfray H. C. J., Beddington J. R., Crute I. R., Haddad L., Lawrence D., Muir F., et al. Food security: the challenge of feeding 9 billion people // Science 2010. V. 327, P. 812—818. doi: 10.1126/science.1185383

67. Bashkin V.N. Environmental Chemistry: Asian Lessons (textbook), Kluwer Academic Publishers, 2003. 472 pp.

68. Emerging Issues of Environmental Concern (Nairobi: United Nations Environment Programme), 2019. P. 52—65.

69. Bashkin V.N. Ecological risks of using nitrogen fertilizers // Issues of risk analysis. 2022. Vol. 19. No. 2. pp. 40—53, https://doi.org/10.32686/1812-5220-2022-19-2-40-53

70. International Energy Agency. Gas production Report. 2022

71. Archibald D. Climate outlook to 2030 // Energy and Environment. 2007. V. 18. No. 5. P. 615—619.

72. Bashkin V. Carbon Biogeochemical Cycle and Consequences of Climate Changes. In: Brian Fath (Ed), “Encyclopedia of Ecology 2nd edition”, Elsevier, 2018, ISBN: 9780444637680

73. Bashkin V.N., Galiulin R.V. Geoecological Risk Management in Polar Areas. Springer, Environmental Pollution, 28. Switzerland, 2019, 155 pp.

74. Gazprom saved Europe from frosts with profit. https://www.discred.ru/2021/02/02/gazprom-spas-evropu-otmorozov-s-vygodoj/

75. Chen X., Cui Z., Fan M., Vitousek P., Zhao M., Ma W., et al. Producing more grain with lower environmental costs. Nature, 2014. 514, 486—489. doi: 10.1038/nature13609

76. Hatfield J. L., Walthall C. L. Meeting global food needs: Realizing the potential via genetics × environment × management interactions. Agron. J., 2015. V.107. P. 1215—1226. doi: 10.2134/agronj15.0076

77. Balafoutis A., Beck B., Fountas S., Vangeyte J., Wal T. V., Soto I., et al. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability, 2017. V. 9:1339. doi: 10.3390/su9081339

78. Chlingaryan A., Sukkarieh S., Whelan B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review. Comp. Electronics Agric., 2018. V. 151. P. 61—69. doi: 10.1016/j.compag.2018.05.012

79. Global gas outlook to 2050. McKinsey. Summary Report. February 2021 (https://www.mckinsey.com/~/media/mckinsey/industries/oil%20and%20gas/our%20insights/global%20gas%20outlook%20to%202050/global%20gas%20outlook%202050_final.pdf)

80. Bashkin V.N. The role of geopolitical, climatic and technological factors in the ratio of renewable and fossil energy sources // Life of the Earth. Vol. 43, No. 3. pp. 314-327. DOI 10.29003/m2436.0514-7468.2020_43_3/314-327

81. Bashkin V.N. Technosphere: the intersection of technogenic, natural and social risks // Issues of risk analysis. Vol. 18. 2021. No. 1. pp. 8—9 https://doi.org/10.32686/1812-5220-2021-18-1-8-9

82. Bashkin V.N., Arabsky A.K. Lessons of winter 20/21. Prospects of natural gas as an energy source in the light of geopolitics, technology... and the vagaries of the weather // Gas business. 2021. No. 1. pp. 12—19.

83. EC. Farm to Fork Strategy. https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf


Review

For citations:


Bashkin V.N., Alekseev A.O. Global Food Security and Fundamental Role of Fertilizer Part 2. Fundamental Role of Fertilizer in Food Production. Issues of Risk Analysis. 2022;19(4):10-29. https://doi.org/10.32686/1812-5220-2022-19-4-10-29

Views: 550


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1812-5220 (Print)
ISSN 2658-7882 (Online)